
Ana Milanova and Yin Liu

Department of Computer Science , Rensselaer Polytechnic Institute, Troy, NY

Static Ownership Inference for Reasoning Against Concurrency Errors

Motivation

Our Approach

Annotated Object Graph

• Runtime object graph

– Object access relationships during program execution

• Object graph has edge

– A field f of o refers to o’

– A local variable r in method m refers to o’ in invocation o.m

• Edge annotation

– Transfer of control between objects

– Annotation m1-m2 on edge o1-o2 : o1.m1 calls o2.m2

Ownership Inference

• A new view of OO programs

– Emphasis on object structure and transfer of control

– How threads access shared objects

– Connection between data and control transfer

• Reasoning about concurrency with ownership

– Owners as dominators: no representation exposure

– Ownership is useful in reasoning about concurrency

• Overview of approach

– Annotated object graph

– Ownership inference

– Static analysis for data race detection

• Implementation-level ownership

– Owners-as-dominators (FLAP without parameterization)

– o owns o’: o is immediate dominator of o’ in the object graph

• Approximate annotated object graph

– Safe static approximation of structure (runtime object accesses)

– Safe approximation of control transfer

• Ownership inference

– Reason on approximate graph

– Dominancy boundary of o : portion of object graph that is
dominated by o

'oo

Reasoning Against Data Races

• Main intuition

– To have data race on on : object race on the owner of on, ok

– If accesses to ok appropriately synchronized: no race on on

• Data race detection

– Start from a potential data race

– Trace control transfer annotations backwards

–Ownership hierarchy

–Take into account synchronization on owners

The Structure Of Object Sharing

• Thread owned objects

– Objects owned by their creating threads

• Central shared objects

– Objects directly accessed by two or more threads

– Deep dominance boundaries: deep data race

• Distributed shared objects

– Objects created in one thread, passed to boundary of another

object in another thread. Difficult to reason about

• Our work: use static analysis to study the structure of

sharing in real-world applications

Conclusion And Future Work

• Construction of annotated object graph

– Novel representation of objects and object accesses

– Structural information

– Control transfer information connected with data

• Static analysis algorithms for data race detection

– Ownership inference on annotated object graph

– May lead to easier detection of data races

• Study the structure of sharing in real-world applications

Related Work

• Race detection dynamic and hybrid approaches

– Sen [PLDI08], Park and Sen [FSE08], many other

• Static race detection

– Naik et al. [PLDI06]: uses precise points-to and other analyses

• Ownership in reasoning about concurrency

– Von Praun and Gross [OOPSLA01]: thread ownership, dynamic

object race detection

– Boyapati et al. [OOPSLA02]: ownership type system

• Shared memory concurrency

– Increasingly relevant

– Difficult to reason about

• Data races

– Detection

– Understanding structure of sharing

• Current research primarily on dynamic techniques

– Lockset, happens before, other approaches

– Unsafe, time and space overhead, delay error reports

• Research on static techniques is underrepresented!

– Algorithms for static detection of data races

– Reasoning about structure of object sharing in OO programs

